Thailand is implementing artificial intelligence to assist interpreting chest radiographs in public health

Authors

  • Wiwatana Tanomkiat, M.D. Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
  • Sitthichok Chaichulee, Ph.D. Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
  • Thammasin Ingviya, M.D., Ph.D. Department of Family and Preventive Medicine, Department of Clinical Research and Medical Data Science, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
  • Supharerk Thawillarp, M.D., D.P.H. Epidemic Intelligence Unit (EIU), Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand.

DOI:

https://doi.org/10.46475/asean-jr.v26i3.988

Keywords:

AI, Ministry of Public Health, Thailand, Diagnostic radiology, Artificial intelligence, Chest radiograph

Abstract

Thailand is committed to improving the quality and equity of its healthcare system through the integration of advanced technology.  In line with this goal, the Ministry of Public Health will deploy an artificial intelligence (AI) system to assist with chest radiograph interpretation in a phased rollout: 167 hospitals in 2025, 445 in 2026, and full implementation across 887 hospitals by 2027. This article traces the development of this AI initiative, from its origins as a volunteer screening tool during the 2020 COVID-19 pandemic to its formal incorporation into a nationwide government project slated for 2025.

Downloads

Download data is not yet available.

References

World Health Organization. World health statistics 2024 monitoring health for the SDGs, sustainable development goals [Internet]. Geneva: WHO; 2024 [cited 2025 Sep 28]. Available from: https://iris.who.int/bitstream/handle/10665/376869/9789240094703-eng.pdf?sequence=1

World Health Organization. WHO consolidated guidelines on tuberculosis. Module 2, Screening: systematic screening for tuberculosis disease [Internet]. Geneva: WHO; 2021 [cited 2025 Sep 28]. Available from: https://www.who.int/publications/i/item/9789240022676

Ministry of Public Health, Department of Disease Control, Division of Tuberculosis [Internet]. Thailand operational plan to end tuberculosis, Phase 2 (2023 - 2027) [Internet]. Nonthaburi: MOPH; 2523 [cited 2025 Sep 29]. Available from: https://www.tbthailand.org/download/Manual/AW_Eng%20แผนปฏิบัติการระดับชาติ%20new.pdf

Hwang EJ, Jeong WG, David PM, Arentz M, Ruhwald M, Yoon SH. AI for detection of tuberculosis: Implications for global health. Radiol Artif Intell 2024 ;6:e230327. doi: 10.1148/ryai.230327.

Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep 2019;9:15000. doi: 10.1038/s41598-019-51503-3.

Tanomkiat W. From The Editor. ASEAN J Radiol [Internet]. 2020 [cited 2025 Sep 28];21(2):3. Available from: https://www.asean-journal-radiology.org/index.php/ajr/article/view/92

Tanomkiat W. The third COVID-19 wave in Thailand. ASEAN J Radiol [Internet]. 2021 [cited 2025 Sep 28];22(1):3-4. Available from: https://www.asean-journal-radiology.org/index.php/ajr/article/view/125

Tanomkiat W. Hospitals, field hospitals, community isolation centers, and finally home isolation. ASEAN J Radiol [Internet]. 2021 [cited 2025 Sep. 28];22(2):3-4. Available from: https://www.asean-journal-radiology.org/index.php/ajr/article/view/148

Tanomkiat W, Taprig A, Piyavisetpat N. RadioVolunteer, a novel combination of social, management and technological innovations by the Royal College of Radiologists of Thailand in response to the COVID-19 pandemic. ASEAN J Radiol [Internet]. 2021 [cited 2025 Sep 28];22(2):57-66. Available from: https://www.asean-journal-radiology.org/index.php/ajr/article/view/146

Yu AC, Mohajer B, Eng J. External validation of deep learning algorithms for radiologic diagnosis: A systematic review. Radiol Artif Intell 2022 ;4:e210064. doi: 10.1148/ryai.210064.

Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design Characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: Results from recently published papers. Korean J Radiol 2019;20:405-10. doi: 10.3348/kjr.2019.0025.

Ahmad Khan F, Pande T, Tessema B, Song R, Benedetti A, Pai M, et al. Computer-aided reading of tuberculosis chest radiography: moving the research agenda forward to inform policy. Eur Respir J 2017;50:1700953. doi: 10.1183/13993003.00953-2017.

Chaichulee S, Ingviya T, Thawillarp S, Attasara P, Tanomkiat W. The Royal College of Radiologists of Thailand in collaboration with Thailand Center of Excellence in Life Sciences shape the future of artificial intelligence in diagnostic radiology. ASEAN J Radiol [Internet]. 2021 [cited 2025 Sep 28];22(1):55-61. Available from: https://www.asean-journal-radiology.org/index.php/ajr/article/view/126

Halldin CN, Hale JM, Weissman DN, Attfield MD, Parker JE, Petsonk EL, et al. The National Institute for Occupational Safety and Health B Reader Certification Program—An update report (1987 to 2018) and future directions. J Occup Environ Med 2019;61:1045–51. doi: 10.1097/JOM.0000000000001735.

The Royal College of Radiologists of Thailand (RCRT) [Internet]. Bangkok: RCRT; 2025 [cited 2025 Sep 28]. รายงานผลการทดสอบปัญญาประดิษฐ์ในภาพถ่ายรังสีทรวงอก. Available from: https://rcrt.or.th/ai_test_report/

Siriwat S, Siripornpibul T, Pimnumyen N, Saengthong P, Kongmueang R, Nimnuch N, et al. The development of screening system tuberculosis disease by using innovative artificial intelligence in Chattrakarn Hospital. Royal Thai Navy Med J [Internet]. 2021 [cited 2025 Sep 28];48:249-61. Available from: https://he01.tci-thaijo.org/index.php/nmdjournal/article/view/251127

Prachatipat Hospital [Internet]. Pathum Thani: Prachatipat Hospital; 2025 [cited 2025 Sep 28]. Imaging Hub Project. Thai. Available from: https://prachahos.com/wp-content/uploads/2025/02/130168-02.pdf

Ministry of Public Health, Food and Drug Administration, Medical Device Control Division. [Internet]. Nonthaburi: FDA; c2020 [cited 2025 Sep 28]. [Consumers are safe prosperous entrepreneus sustainable Thai consumer project system]. Thai. Available from: https://medical.fda.moph.go.th/samd-head

สำนักงานหลักประกันสุขภาพแห่งชาติ [Internet]. กรุงเทพ: สปสช; 10 กรกฎาคม 2568 [cited 2025 Sep 29]. บอร์ด สปสช. หนุนนวัตกรรมไทยใช้ “AI อ่านฟิล์มเอกซเรย์” ยกระดับบัตรทอง เริ่มนำร่องปีนี้ รพ.ภาครัฐ 167 แห่ง. Thai. Available from: https://www.nhso.go.th/th/communicate-th/thnewsforperson/ai-167

Percepta [Internet]. Bangkok: Perceptra Co., Ltd; c2024 [cited 2025 Sep 29]. Inspectra CXR transforming patient care with AI-assisted detection. Available from: https://perceptra.tech/inspectra-cxr/

Downloads

Published

2025-10-10

How to Cite

1.
Tanomkiat W, Chaichulee S, Ingviya T, Thawillarp S. Thailand is implementing artificial intelligence to assist interpreting chest radiographs in public health. ASEAN J Radiol [Internet]. 2025 Oct. 10 [cited 2025 Oct. 11];26(3):270-83. Available from: https://asean-journal-radiology.org/index.php/ajr/article/view/988

Issue

Section

ASEAN Movement in Radiology

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.