Integrating machine learning into medical radiology: Principles, applications, challenges, and future directions

Authors

  • Wisitsak Pakdee M.D. Department of Radiology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand. https://orcid.org/0000-0002-1419-5289
  • Sorawat Sangkaew M.D. Ph.D. Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, the UK. And Department of Social Medicine, Hatyai Hospital, Hatyai, 90110, Thailand. https://orcid.org/0000-0002-1862-0879
  • Richard C Wilson M.Sc. M.Pharm Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, the UK.
  • Pramot Tanutit M.D. Department of Social Medicine, Hatyai Hospital, Hatyai, Thailand. https://orcid.org/0000-0002-1775-4197

DOI:

https://doi.org/10.46475/asean-jr.v25i3.188

Keywords:

AI, Artificial intelligence, Artificial neural network, Deep learning, Machine learning

Abstract

Over recent decades, machine learning has been widely implemented in medical radiology. Radiologists, who are at the forefront of clinical practice, need to be aware of the benefits of machine learning to facilitate its implementation. It is crucial for them to thoroughly understand and effectively integrate machine learning into the practical realm of medical radiology.

In this review, we highlight the principles and applications of machine learning in medical radiology and provide a summary of its development in this field. Machine learning has significantly advanced diagnostic imaging, enhancing detection, segmentation, and image reconstruction, while improving workflow efficiency and radiology reporting. Current literature indicates three primary challenges in implementing machine learning: data standardization, validation of model performance, and regulatory compliance. The successful integration of machine learning in clinical practice requires robust data security protocols and clear frameworks for professional accountability. To prepare for this technological transition, radiologists must develop new competencies through enhanced educational programs and adapt their roles to focus more on clinical decision-making and multidisciplinary collaboration while leveraging machine learning as a supportive tool.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

O’Sullivan JW, Stevens S, Hobbs FDR, Salisbury C, Little P, Goldacre B, et al. Temporal trends in use of tests in UK primary care, 2000-15: retrospective analysis of 250 million tests. BMJ 2018;363:k4666. doi: 10.1136/bmj.l444. DOI: https://doi.org/10.1136/bmj.k4666

Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a large integrated health system. Health Aff (Millwood) 2008;27:1491–502. doi: 10.1377/hlthaff.27.6.1491. DOI: https://doi.org/10.1377/hlthaff.27.6.1491

Rimmer A. Radiologist shortage leaves patient care at risk, warns royal college. BMJ 2017;359:j4683. doi: 10.1136/bmj.j4683. DOI: https://doi.org/10.1136/bmj.j4683

Savadjiev P, Chong J, Dohan A, Vakalopoulou M, Reinhold C, Paragios N, et al. Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol 2019;29:1616–24. doi: 10.1007/s00330-018-5674-x. DOI: https://doi.org/10.1007/s00330-018-5674-x

Howell MD, Corrado GS, DeSalvo KB. Three epochs of artificial intelligence in health care. JAMA 2024;331:242- 4. doi: 10.1001/jama.2023.25057. DOI: https://doi.org/10.1001/jama.2023.25057

Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007;31:198–211. doi: 10.1016/j.compmedimag.2007.02.002. DOI: https://doi.org/10.1016/j.compmedimag.2007.02.002

Chen CM, Chou YH, Tagawa N, Do Y. Computer-aided detection and diagnosis in medical imaging. Comput Math Methods Med 2013;2013:790608. doi: 10.1155/2013/790608 DOI: https://doi.org/10.1155/2013/790608

Castellino RA. Computer-aided detection (CAD): an overview. Cancer Imaging 2005;5:17–9. doi: 10.1102/1470-7330.2005.0018. DOI: https://doi.org/10.1102/1470-7330.2005.0018

Wang S, Summers RM. Machine learning and radiology. Med Image Anal 2012 ;16:933–51. doi: 10.1016/j.media.2012.02.005. DOI: https://doi.org/10.1016/j.media.2012.02.005

Deo RC. Machine learning in medicine. Circulation 2015;132:1920–30. doi: 10.1161/CIRCULATIONAHA.115.001593. DOI: https://doi.org/10.1161/CIRCULATIONAHA.115.001593

Khajuria R, Sarwar A. Review of reinforcement learning applications in segmentation, chemotherapy, and radiotherapy of cancer. Micron 2024;178:103583. doi: 10.1016/j.micron.2023.103583. DOI: https://doi.org/10.1016/j.micron.2023.103583

Howard FM, Kochanny S, Koshy M, Spiotto M, Pearson AT. Machine learning-guided adjuvant treatment of head and neck cancer. JAMA Netw Open 2020;3:e2025881. doi: 10.1001/jamanetworkopen.2020.25881. DOI: https://doi.org/10.1001/jamanetworkopen.2020.25881

Xie L, Xu D, He K, Tian X. Machine learning-based radiotherapy time prediction and treatment scheduling management. J Appl Clin Med Phys 2023;24:e14076. doi: 10.1002/acm2.14076. DOI: https://doi.org/10.1002/acm2.14076

Li T, Wang J, Yang Y, Glide-Hurst CK, Wen N, Cai J. Multi-parametric MRI for radiotherapy simulation. Med Phys 2023;50:5273–93. doi: 10.1002/mp.16256. DOI: https://doi.org/10.1002/mp.16256

Fechter T, Sachpazidis I, Baltas D. The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data. Z Med Phys 2024;34:180–96. doi: 10.1016/j.zemedi.2022.10.005. DOI: https://doi.org/10.1016/j.zemedi.2022.10.005

Zhang J, Fang J, Xu Y, Si G. How AI and robotics will advance interventional radiology: narrative review and future perspectives. Diagnostics 2024 ;14:1393. doi: 10.3390/diagnostics14131393. DOI: https://doi.org/10.3390/diagnostics14131393

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018;18:500–10. doi: 10.1038/s41568-018-0016-5. DOI: https://doi.org/10.1038/s41568-018-0016-5

Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology 2018 ;288:318–28. doi: 10.1148/radiol.2018171820. DOI: https://doi.org/10.1148/radiol.2018171820

Marella WM, Sparnon E, Finley E. Screening electronic health record–related patient safety reports using machine learning. J Patient Saf 2017;13:31–6. doi: 10.1097/PTS.0000000000000104. DOI: https://doi.org/10.1097/PTS.0000000000000104

Najjar R. Redefining radiology: a review of artificial intelligence integration in medicaliImaging. Diagnostics (Basel) 2023;13:2760. doi: 10.3390/diagnostics13172760. DOI: https://doi.org/10.3390/diagnostics13172760

SFR-IA Group, CERF, French Radiology Community. Artificial intelligence and medical imaging 2018: French Radiology Community white paper. Diagn Interv Imaging 2018 ;99:727–42. doi: 10.1016/j.diii.2018.10.003. DOI: https://doi.org/10.1016/j.diii.2018.10.003

Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487–92. doi: 10.1038/nature25988. DOI: https://doi.org/10.1038/nature25988

Gao Y, Song Y, Yin X, Wu W, Zhang L, Chen Y, et al. Deep learning-based digital subtraction angiography image generation. Int J Comput Assist Radiol Surg 2019 ;14:1775–84. doi: 10.1007/s11548-019-02040-x. DOI: https://doi.org/10.1007/s11548-019-02040-x

Nagayama Y, Emoto T, Kato Y, Kidoh M, Oda S, Sakabe D, et al. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography. Eur Radiol 2023;33:8488–500. doi: 10.1007/s00330-023-09888-3. DOI: https://doi.org/10.1007/s00330-023-09888-3

Zhang J, Gong W, Ye L, Wang F, Shangguan Z, Cheng Y. A Review of deep learning methods for denoising of medical low-dose CT images. Comput Biol Med 2024 ;171:108112. doi: 10.1016/j.compbiomed.2024.108112. DOI: https://doi.org/10.1016/j.compbiomed.2024.108112

Fujita N, Yasaka K, Katayama A, Ohtake Y, Konishiike M, Abe O. Assessing the effects of deep learning reconstruction on abdominal CT without arm elevation. Can Assoc Radiol J 2023;74:688–94. doi: 10.1177/08465371231169672. DOI: https://doi.org/10.1177/08465371231169672

Wang T, Yu H, Wang Z, Chen H, Liu Y, Lu J, et al. SemiMAR: semi-supervised learning for CT metal artifact reduction. IEEE J Biomed Health Inform 2023 ;27:5369–80. doi: 10.1109/JBHI.2023.3312292. DOI: https://doi.org/10.1109/JBHI.2023.3312292

Man C, Lau V, Su S, Zhao Y, Xiao L, Ding Y, et al. Deep learning enabled fast 3D brain MRI at 0.055 tesla. Sci Adv 2023;9:eadi9327. doi: 10.1126/sciadv.adi9327. DOI: https://doi.org/10.1126/sciadv.adi9327

Safari M, Eidex Z, Chang CW, Qiu RLJ, Yang X. Fast MRI reconstruction using deep learning-based compressed sensing: A systematic review. arXiv:2405.00241v1 [Preprint]. 2024 [cited 2024 Dec 17]. Available from: https://arxiv.org/abs/2405.00241.

Wessling D, Gassenmaier S, Olthof SC, Benkert T, Weiland E, Afat S, et al. Novel deep-learning-based diffusion weighted imaging sequence in 1.5 T breast MRI. Eur J Radiol 2023;166:110948. doi: 10.1016/j.ejrad.2023.110948. DOI: https://doi.org/10.1016/j.ejrad.2023.110948

Xie Y, Tao H, Li X, Hu Y, Liu C, Zhou B, et al. Prospective comparison of standard and deep learning-reconstructed turbo spin-echo MRI of the shoulder. Radiology 2024 ;310:e231405. doi: 10.1148/radiol.231405. DOI: https://doi.org/10.1148/radiol.231405

Cui Z, Fang Y, Mei L, Zhang B, Yu B, Liu J, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun 2022;13:2096. doi: 10.1038/s41467-022-29637-2. DOI: https://doi.org/10.1038/s41467-022-29637-2

Rusanov B, Hassan GM, Reynolds M, Sabet M, Kendrick J, Rowshanfarzad P, et al. Deep learning methods for enhancing cone-beam CT image quality toward adaptive radiation therapy: A systematic review. Med Phys 2022;49:6019–54. doi: 10.1002/mp.15840. DOI: https://doi.org/10.1002/mp.15840

Zhang Y, Huang X, Wang J. Advanced 4-dimensional cone-beam computed tomography reconstruction by combining motion estimation, motion-compensated reconstruction, biomechanical modeling and deep learning. Vis Comput Ind Biomed Art 2019;2:23. doi: 10.1186/s42492-019-0033-6. DOI: https://doi.org/10.1186/s42492-019-0033-6

Szczykutowicz TP, Toia GV, Dhanantwari A, Nett B. A Review of deep learning CT reconstruction: concepts, limitations, and promise in clinical practice. Curr Radiol Rep 2022;10:101–15. doi: 10.1007/s40134-022-00399-5 DOI: https://doi.org/10.1007/s40134-022-00399-5

Muller B, Wang G, editors. Developments in X-Ray tomography XI. Proceedings volume 10391. SPIE optical engineering application; 2017 Aug 6-10; San Diego, California, United State. Bellingham (WA): SPIE Digital Library; 2024 [cited 2024 Dec 17]. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10391.toc?webSyncID=7a434259-d750-205b-5837-e5e3b52e1a93&sessionGUID=a61b9741-6734-4428-b5d6-4bb0bbb9456a37.

Yankeelov TE, Abramson RG, Quarles CC. Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol 2014;11:670–80. doi: 10.1038/nrclinonc.2014.134. DOI: https://doi.org/10.1038/nrclinonc.2014.134

Jimenez-Mesa C, Arco JE, Martinez-Murcia FJ, Suckling J, Ramirez J, Gorriz JM. Applications of machine learning and deep learning in SPECT and PET imaging: General overview, challenges and future prospects. Pharmacol Res 2023;197:106984. doi: 10.1016/j.phrs.2023.106984. DOI: https://doi.org/10.1016/j.phrs.2023.106984

Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2018;2:35. doi: 10.1186/s41747-018-0061-6. DOI: https://doi.org/10.1186/s41747-018-0061-6

Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med 2011;41:449–62. doi: 10.1053/j.semnuclmed.2011.06.004. DOI: https://doi.org/10.1053/j.semnuclmed.2011.06.004

Zhang J, Wang Y, Yu B, Shi X, Zhang Y. Application of computer-aided diagnosis to the sonographic evaluation of cervical lymph nodes. Ultrason Imaging 2016;38:159–71. doi: 10.1177/0161734615589080. DOI: https://doi.org/10.1177/0161734615589080

Liew C. The future of radiology augmented with artificial intelligence: A strategy for success. Eur J Radiol 2018;102:152–6. doi: 10.1016/j.ejrad.2018.03.019. DOI: https://doi.org/10.1016/j.ejrad.2018.03.019

Parisot S, Darlix A, Baumann C, Zouaoui S, Yordanova Y, Blonski M, et al. A probabilistic atlas of diffuse WHO grade II glioma locations in the brain. PLoS One 2016;11:e0144200. doi: 10.1371/journal.pone.0144200. DOI: https://doi.org/10.1371/journal.pone.0144200

Pejavar S, Yom SS, Hwang A, Speight J, Gottschalk A, Hsu IC, et al. Computer-assisted, atlas-based segmentation for target volume delineation in whole pelvic IMRT for prostate cancer. Technol Cancer Res Treat 2013;12:199–206. doi: 10.7785/tcrt.2012.500313. DOI: https://doi.org/10.7785/tcrt.2012.500313

Gitto S, Serpi F, Albano D, Risoleo G, Fusco S, Messina C, et al. AI applications in musculoskeletal imaging: a narrative review. Eur Radiol Exp 2024;8:22. doi: 10.1186/s41747-024-00422-8. DOI: https://doi.org/10.1186/s41747-024-00422-8

Lacroix M, Aouad T, Feydy J, Biau D, Larousserie F, Fournier L, et al. Artificial intelligence in musculoskeletal oncology imaging: A critical review of current applications. Diagn Interv Imaging 2023;104:18–23. doi: 10.1016/j.diii.2022.10.004. DOI: https://doi.org/10.1016/j.diii.2022.10.004

Park CW, Oh SJ, Kim KS, Jang MC, Kim IS, Lee YK, et al. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation. PLoS One 2022;17:e0264140. doi: 10.1371/journal.pone.0264140. DOI: https://doi.org/10.1371/journal.pone.0264140

Pakdee W, Laohawiriyakamol T, Tanutit P, Laohawiriyakamol S, Liabsuetrakul T. Association of body composition and survival in patients with locally advanced breast cancer: a historical cohort study. Acta Radiol 2024;65:575–87. doi: 10.1177/02841851241241528. DOI: https://doi.org/10.1177/02841851241241528

Anjanappa M, Corden M, Green A, Roberts D, Hoskin P, McWilliam A, et al. Sarcopenia in cancer: Risking more than muscle loss. Tech Innov Patient Support Radiat Oncol 2020 ;16:50–7. doi: 10.1016/j.tipsro.2020.10.001. DOI: https://doi.org/10.1016/j.tipsro.2020.10.001

Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ. Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports. Appl Clin Inform 2015;6:600–10. doi: 10.4338/ACI-2014-11-RA-0110. DOI: https://doi.org/10.4338/ACI-2014-11-RA-0110

Oliveira L, Tellis R, Qian Y, Trovato K, Mankovich G. Follow-up recommendation detection on radiology reports with incidental pulmonary nodules. Stud Health Technol Inform 2015;216:1028.

Bizzo BC, Almeida RR, Alkasab TK. Artificial intelligence enabling radiology reporting. Radiol Clin North Am 2021;59:1045–52. doi: 10.1016/j.rcl.2021.07.004. DOI: https://doi.org/10.1016/j.rcl.2021.07.004

Park J, Oh K, Han K, Lee YH. Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting. Sci Rep 2024;14:13218. doi: 10.1038/s41598-024-63824-z. DOI: https://doi.org/10.1038/s41598-024-63824-z

C. Pereira S, Mendonça AM, Campilho A, Sousa P, Teixeira Lopes C. Automated image label extraction from radiology reports — A review. Artif Intell Med 2024;149:102814. doi: 10.1016/j.artmed.2024.102814. DOI: https://doi.org/10.1016/j.artmed.2024.102814

Erickson BJ, Kitamura F. Magician’s Corner: 9. Performance metrics for machine learning models. Radiol Artif Intell 2021;3:e200126. doi: 10.1148/ryai.2021200126. DOI: https://doi.org/10.1148/ryai.2021200126

European Medicines Agency [Internet]. Amsterdam: The Agency; c1995 - 2024 [cited 2024 Jul 29]. The use of artificial intelligence (AI) in the medicinal product lifecycle. Available from: https://www.ema.europa.eu/en/use-artificial-intelligence-ai-medicinal-product-lifecycle.

Zhang K, Khosravi B, Vahdati S, Erickson BJ. FDA review of radiologic AI algorithms: Process and challenges. Radiology 2024;310:e230242. doi: 10.1148/radiol.230242. DOI: https://doi.org/10.1148/radiol.230242

Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 2018;15(3 Pt B):504–8. doi: 10.1016/j.jacr.2017.12.026. DOI: https://doi.org/10.1016/j.jacr.2017.12.026

Gallix B, Chong J. Artificial intelligence in radiology: who’s afraid of the big bad wolf? Eur Radiol 2019;29:1637–9. doi: 10.1007/s00330-018-5995-9. DOI: https://doi.org/10.1007/s00330-018-5995-9

Mayo RC, Leung JWT. Impact of artificial intelligence on women’s imaging: cost-benefit analysis. AJR Am J Roentgenol 2019;212:1172–3. doi: 10.2214/AJR.18.20419. DOI: https://doi.org/10.2214/AJR.18.20419

Brady SL. Implementation of AI image reconstruction in CT-how is it validated and what dose reductions can be achieved. Br J Radiol 202396:20220915. doi: 10.1259/bjr.20220915. DOI: https://doi.org/10.1259/bjr.20220915

Pesapane F, Volonté C, Codari M, Sardanelli F. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging 2018;9:745–53. doi: 10.1007/s13244-018-0645-y. DOI: https://doi.org/10.1007/s13244-018-0645-y

Jaremko JL, Azar M, Bromwich R, Lum A, Alicia Cheong LH, Gibert M, et al. Canadian Association of Radiologists white paper on ethical and legal issues related to artificial intelligence in radiology. Can Assoc Radiol J 2019 ;70:107–18. doi: 10.1016/j.carj.2019.03.001. DOI: https://doi.org/10.1016/j.carj.2019.03.001

Mayo RC, Leung J. Artificial intelligence and deep learning – Radiology’s next frontier? Clin Imaging 2018;49:87–8. doi: 10.1016/j.clinimag.2017.11.007. DOI: https://doi.org/10.1016/j.clinimag.2017.11.007

Fazal MI, Patel ME, Tye J, Gupta Y. The past, present and future role of artificial intelligence in imaging. Eur J Radiol 2018;105:246–50. doi: 10.1016/j.ejrad.2018.06.020. DOI: https://doi.org/10.1016/j.ejrad.2018.06.020

Wang H, Zhao T, Li LC, Pan H, Liu W, Gao H, et al. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. J XRay Sci Technol 2018;26:171–87. doi: 10.3233/XST-17302. DOI: https://doi.org/10.3233/XST-17302

Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography: Diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 2017;52:434–40. doi: 10.1097/RLI.0000000000000358. DOI: https://doi.org/10.1097/RLI.0000000000000358

Downloads

Published

2025-01-01

How to Cite

1.
Pakdee W, Sangkaew S, Wilson R, Tanutit P. Integrating machine learning into medical radiology: Principles, applications, challenges, and future directions. ASEAN J Radiol [Internet]. 2025 Jan. 1 [cited 2025 Jan. 31];25(3):325-52. Available from: https://asean-journal-radiology.org/index.php/ajr/article/view/188

Issue

Section

Review Article

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.