

Original Article

Outcome of Radioiodine Treatment by Using 4-Hour I-131 Uptake Value for Dose Calculation in Graves' Disease

Kanaungnit Kingpetch, MD.

Division of Nuclear Medicine. Department of Radiology, Faculty of Medicine. Chulalongkorn University. Bangkok. Thailand.

Abstract

Objective: To evaluate outcome of radioiodine treatment by using 4-hour I-131 uptake value for calculation therapeutic dose for patients with Graves' disease.

Materials and Methods: We studied 122 Graves' disease patients with hyperthyroidism. The 4-hour ¹³¹I uptake was done in each patient, the 24- hour ¹³¹I uptake was estimated from the equation: *predicted 24 hr* ¹³¹I *uptake = 36.7764 + 0.518 (4 hr* ¹³¹I *uptake)*. The RAI treatment dose was calculated using the formula based on estimated. thyroid size and predicted 24-hour ¹³¹I uptake. We determined thyroid status of these patients at 1 year after the treatment.

Results: Ninety - five patients (77.9%) were euthyroidism or hypothyroidism at 1 year after treatment, and Twenty-seven patients (21.1%) had persistent hyperthyroidism. The patients who had persistent hyperthyroidism had larger thyroid gland (P < 0.001) and higher 4- hr¹³¹I uptake value (P = 0.003). We found the outcome of treatment of our study were similar to the outcome of other studies that used other regimens in the treatment of Graves' disease patients with ¹³¹I.

Conclusion: Radioiodine treatment (¹³¹I) based on 4- hour ¹³¹I uptake is an effective treatment for patients with Graves' disease. This approach is safe, simple and convenience for the patients.

Keyword: Hyperthyroidism, Early I-131 uptake

Introduction

Radioactive iodine (131) has been used for treatment of hyperthyroidism more than 60 years.¹ Currently, it is the most common treatment for Graves' disease.² Radioiodine therapy is generally safe, with only harmless side - effects and having a high cost/benefit ratio.³ A number of therapeutic dosing regimens have been proposed ranging from those based on high precision dosimetry, to a large or fixed doses of ¹³¹I intended to cause euthyroidism or hypothyroidism after ¹³¹I treatment.⁴ Regarding the dose calculation, the most widely used is to calculate the radioiodine dose in microcuries (µCi) per gram of thyroid tissue. The calculation requires an estimated thyroid weight, the dose to be delivered per gram and 24-hour radioactive iodine uptake (RAIU). This method requires the patient has to come for measurement of RAIU for two days. The inconvenience and expense associated with 2 - day test had led many hospitals to use early uptake (3 to 6 hours) of ¹³¹I for calculated therapeutic dose.5-8 This would permit same day uptake measurement and therapy, thus reducing the cost and inconvenience of 2 - days examination.

The purpose of this prospective study was to assess the outcome of treatment by using 4- hour ¹³¹I uptake value in the calculation of the treatment dose of radioactive iodine in Graves' disease patients.

Materials and Methods

Patients

One hundred and twenty - nine patients with Graves' disease were recruited in this study. All patients were diagnosed with Graves' disease based on their clinical findings, including the present of hyperthyroidism and a diffuse goiter without nodule and high level of serum thyroid hormones. Recorded information included : age at the time of therapy , gender ,thyroid weight by palpitation, radioiodine (¹³¹I) uptake at 4 -hour, administered ¹³¹I treatment dose. Antithyroid drug was discontinued for at least 7 days before ¹³¹I administration.

Methods

All patients (n = 129) were given an oral dose of ¹³¹I approximately 20 µCi each orally. Radioactive iodine uptake was then performed after 4 hours using a single probe counting system consisting of sodium iodine crystal and single channel analyzer (Quadra 605, Macintosh Corp.). Then we used an equation : predicted 24 hr ¹³¹I uptake = 36.7764 + 0.518 (4 hr ¹³¹ l uptake), to estimated 24- hour ¹³¹ uptake based on measured 4-hour ¹³¹I uptake⁸. These predicted 24-hour ¹³¹I uptake was then used to calculate the therapeutic doses of ¹³¹I to be given to the patient. The therapeutic doses were calculated using the following formula; ¹³¹I therapeutic dose (mCi) = 100 µCi/gm X thyroid gland weight (gm) X 1000 / (predicted 24 hr 131 uptake) X 100. In some patients antithyroid medications (PTU, MMI) were restarted at least 5 days following the ¹³¹I therapy. No patient had thyroid tenderness or thyroid storm in the first 3 months after the therapy.

Follow up after ¹³¹I therapy

The patient treatment outcome was patient's thyroid status within 1 year after ¹³¹I therapy. A satisfactory outcome is either stable euthyroidism or permanent hypothyroidism. A euthyroid outcome was defined as normal serum FT_3 or FT_4 and TSH concentrations without any medication at 1 yr. A hypothyroid outcome was defined as biochemical evidence of inadequate thyroid hormone production (elevated serum TSH) requiring long - term thyroid

September-December 2010, Volume XVI No.III

hormone replacement. Hyperthyroidism was defined as elevated serum FT₃ and suppressed TSH, with or without the patient continued to require antithyroid medication or further ¹³¹I treatment.

Statistical analysis

Descriptive statistic data for dermographics were presented as the mean ± SD. Univariable analysis for continuous data used Unpair t tests and for category data used Fisher's exact test. Multivariable analysis used binary logistic regression for predict failure rate outcome. Significance was accepted when P value < 0.05.

Ethic

This study protocol was approved by Ethic Committee of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

Result

Of the 129 patients, we were able to obtain follow - up data for 122 patients (94.57%). Their baseline characteristics were shown in Table 1. The average age was 37.5 yr and the female to male ratio was 5 : 1. Thyroid gland weight average approximately 53 gm, the average 4-hr¹³¹I uptake was 56% and the average predicted 24-hr¹³¹I uptake was 66%. The average therapeutic dose of ¹³¹I was 8.1 mCi (300 MBq).

Table 2 shows outcomes of ¹³¹I treatment at 1 yr. Ninety - five patients (77.9%) were successfully treated (hypothyroidism or euthyroidism). and 27 (22.1%) remained hyperthyroid at 1 year. Of those successfully treated. over 90% responed to ¹³¹I therapy within the first 6 months, as judged by biochemical analysis, symptom improvement and/ or no requirements for antithryoid medication; the remainder responded within the first year.

The three factors (gender, thyroid weight and 4-hr ¹³¹I uptake) were identified by binary logistic regression as effective factors for the outcome of ¹³¹I therapy in these hyperthyroid patients. The adjusted odd ratio for gender was 3.57 (CI = 1.054-12.095), thyroid weight was 1.06 (CI = 1.032-1.090) and 4-hr ¹³¹I uptake was 1.031 (CI = 1.001-1.063).

Two patients had transient hypothyroidism followed by recurrent hyperthyroidism (Table 3). These patients had low serum FT₄ and elevated

Age (years)	37.5 ± 12.3
Sex	
Males	20 (19.6%)
Females	102 (80.4%)
Thyroid weight (gm) *	53.6 ± 29.7
4 hr 131 uptake (%)	56 ± 18.3
Predicted 24 hr 131 uptake (%) **	66 ± 13.4
Dose ¹³¹ I treatment (mCi) ***	8.1 ± 3.9

* Evaluated thyroid weight by palpation

** Calculated from an equation : predicted 24 hr ¹³¹I uptake = 36.7764 + 0.518 (4 hr ¹³¹I uptake)

*** Calcualted using the formula : Dose ¹³¹ treatment (mCi) = 100 µCi/gm X thyroid weight (gm) X 1,000 / (predicted 24 hr ¹³¹ uptake) X 100

serum TSH concentration at 3 months after the ¹³¹I therapy in the absence of antithyroid drug. Then they had a spontaneous recurrent thyrotoxicosis at 6 months after the ¹³¹I therapy.

and higher dose of ¹³¹I treatment. The age was the same in both groups.

Discussion

Characteristics of patients with persistent hyperthyroidism:

Compared with the patients treated successfully, the patients who has persistent hyperthyroidism were male, had larger thyroid size, higher 4-hr and predicted 24-hr¹³¹l uptake value

The effectiveness of ¹³¹I treatment depends on multiple factors including iodine uptake, effective half - life of the iodine in the gland, distribution of radioactivity within tissue and radio - sensitivity of follicular cells. Five approaches for therapeutic dose calculation for patients with Graves' disease have been employed.⁹

Table 2 Outcome of ¹³¹I treatment at 1 yr (n = 122 patients)

	Successful treatment	Treatment failure	P value
	n=95 (77.9%)	n=27 (22.1%)	
Age (years)	37.3 ± 11.9	38.2 ± 13.6	0.747
Gender (female/male)	7.6/1	1/1	0.015
Thyroid weight (gm) *	45.4 ± 16.5	82.7 ± 44.7	<0.001
4 hr. 131 uptake (%)	53 .5 ± 17.5	65.3 ± 18.8	0.003
Predicted 24 hr ¹³¹ I uptake (%) **	64.7 ± 9.2	70.6 ± 9.8	0.005
Dose ¹³¹ I treatment (mCi) ***	7.1 ± 2.2	11.8 ± 6.0	0.001

* Evaluated thyroid weight by palpation

** Calculated from an equation: predicted 24 hr ¹³¹I uptake = 36.7764 + 0.518 (4 hr ¹³¹I uptake)

*** Calcualted using the formula: Dose ¹³¹ I treatment (mCi) = 100 µCi/gm X thyroid weight (gm) X 1000 / (predicted 24 hr ¹³¹ I uptake) X 100

 Table 3 Baseline characteristics. ¹³¹I uptake treatment dose and serum thyroid hormones after ¹³¹I treatment in two patients who had transient hypothyroidism

	Patient No.1	Patient No.2	
Gender (female or male)	female	male	
Age at treatment (yr)	32	54	
Thyroid weight (gm)	70	85	
4 hr ¹³¹ I uptake (%)	54	71	
Predicted 24 hr ¹³¹ l uptake (%)	65	74	
Dose ¹³¹ I treatment (mCi)	10	12	
Serum TSH at 3 months after ¹³¹ I treatment	24	70	
Serum FT4 at 3 months after ¹³¹ I treatment	0.7	0.1	

September-December 2010, Volume XVI No.III

- 1. small doses repeated as necessary:
- 2. a large ablative dose:
- 3. a "sliding scale" based on thyroid size:

4. a standard formula for administered dose based on estimated thyroid size:

5. precise dosimetry for the administered dose.

The most common method in dose determination employs a formula based on estimated thyroid size and 24 -hour RAIU as used in this study.

Hayes AA et al.⁶ studied a group of 27 hyperthyroid patients with Graves' disease using a logarithmic regression equation which was developed to predict 24- hour ¹³¹I uptake from the 4-hour ¹³¹I uptake⁵. They obtained a high correlation between the predicted 24-hour ¹³¹I uptake (PUp) and the actual 24-hour ¹³¹I uptake (r = 0.94). Hennessy JV et al. also studied a group of 51 hyperthyroid patients with Graves' disease using early ¹³¹I uptake and reported that the predicted 24-hour ¹³¹I uptake correlated well with the actual 24-hour ¹³¹I uptake (r = 0.73) and the correlation of calculated doses obtaining from the predicted and the actual 24hour ¹³¹I uptake were highly significant (r = 0.91).

According to our former study conducted in a group of 160 Graves' disease patients⁸, we found high correlation between the predicted 24- hour ¹³¹I uptake and the actual 24-hour ¹³¹I uptake (r = 0.73); the correlation between therapeutic doses based on the predicted 24-hour ¹³¹I uptake and the actual 24- hour ¹³¹I uptake is 0.92.

In this study, we established the outcome of ¹³¹I treatment by using 4-hour ¹³¹I uptake value in the calculation of the treatment dose. We concluded that the goal of therapy is euthyroidism or hypothyroidism within 1 year of therapy. Our results show the efficacy of this protocol, at 1 year after treatment we found 77.9% of Graves' disease patients have

successful treatment. These results were similar to the other studies that were performed to evaluate the effectiveness of ¹³¹I therapy by used the actual 24-hr ¹³¹I uptake to calculate the treatment dose.¹⁰⁻¹²

We found that patients with persisted hyperthyroidism had a larger thyroid gland, higher 4-hor and predicted 24-hour ¹³¹I uptake value, compared to those who became hypothyroidism or euthyroidism. Two patients (1.6%) had transient hypothyroidism followed by recurrent hyperthyroidism. Other studies have reported similar findings in 1-6% of patients treated with radioactive iodine had transient hypothyroidism.¹³⁻¹⁵

In summary, ¹³¹I therapy based on 4-hour radioiodine uptake is an effective treatment for patients with Graves' hyperthyroidism. The advantage of this method is that the uptake and ¹³¹I therapy can be performed within the same day; therefore, it is convenience, simple and safe for the patients.

Acknowledgments

We are indebted to Prof. Dr. Makumkroung Poshyachinda for helpful comments and assistance in the review of this manuscript.

This work was supported by the Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University.

References

- Sawin CT, Becker DV. Radioiodine and the treatment of hyperthyroidism: the early history. Thyroid 1997;7: 163-76.
- Soloman B, Glinoer D, Lagasse R, Wartofsky LN. Current trends on the management of Graves' disease. J Clin Endocrinal Metab 1990;70:1518-24.

- Dietlein M. Lauterbach KW. Schicha H. Treatment of toxic nodular goiters: comparative costing of radioiodine therapy and surgery. Exp Clin Endocrinol Diabetes 1998;106 (Suppl 4):S66-S70.
- Franklyn JA, Daykin J, Drole Z, Farmer M, Sheppard MLN. Long term follow up of treatment of thyrotoxicosis by three different methods. Clin Endocrind (Qxf) 1991;34:71-6.
- Hayes AA, Akre CM, Garman CA. Iodine 131 treatment of Graves' disease using modified early iodine-131 uptake measurement in therapy dose calculation. J Nucl Med 1990;31:519-22.
- Hennessey JV, Berg LA, Ibrahim MA, et al. Evaluation of early (5 to 6 hours) lodine - 123 uptake for diagnosis and treatment planning in Graves' disease. Arch Intern Med 1995;155:621-24.
- Usha SV. Francis BA. Harvey AZ. Therapy dose calculation in Graves' disease using early I-123 uptake measurements. Clin Nucl Med 1996;21:102-05.
- Kingpetch K. Poshyachinda M. Dose calculation using 4-hour I-131 uptake for retreatment radioiodine therapy of patients with Graves' disease Asean J Radio 2003;9: 63-8.

- Shapiro B. Optimization of radioiodine therapy of thyrotoxicosis; what have we learned after 50 years?. J Nucl Med 1993;34:1638-41.
- Alexander EK. Larsen PR. High dose ¹³¹I therapy for the treatment of hyperthyroidism caused by Graves' disease. J Clin Endocrinal Metab 2002;87:1073-77.
- Leslie WD. Peterdy AE , Dupont JO. Radioiodine treatment outcomes in thyroid glands previously irradiated for Graves' hyperthyroidism. J Nucl Med 1998;39:712-6.
- Solomon B, Glinoer D, Lagasse R, Wartofsky L. Current trends in the management of Graves' disease. J Clin Endocrinol Metab 1989;70:1518-22.
- Sawers JS, Toft AD, Irvine WJ, Brown NS. Seth JN. Transient hypothyroidism after iodine - 131 treatment of thyrotoxicosis. J Clin Endocrinal Metab 1980;50:226-9.
- Aizawa Y, Yoshida K, Kaise N, Fukazawa H, Kiso Y, Sayama N, Hori H. Abe K. The development of transient hypothyroidism after iodine - 131 treatment in hyperthyroid patients with Graves' disease: prevalence. mechanism and prognosis. Clin Endocrinal (Oxf) 1997;46:1-5.
- Gomez N, Gomez JM, Orti A, Gavalda L, Villabona C, Leyes P. Soler J. Transient hyothyroidism after iodine -131 therapy for Graves' disease. J Nucl Med 1995;36: 1539-42.