DETECTION OF DEEP VEIN THROMBOSIS BY ^{99m}Tc-SULFUR COLLOID IN 24 CASES

Nisarut RUKSAWIN M.S,¹ Pramot PHORNPHIBULAYA M.D.²

ABSTRACT

Scintigrams of the legs were recorded by computed scinticamera after antecubital injection of ^{99m}Tc-sulfur colloid in 24 patients with suspected deep vein thrombosis. Contrast venogram were taken after the scan 1 hour to 1 day. Of 15 patients with confirmed deep venous thrombosis, 11 had positive scans. Of 9 patients with normal venograms, 8 had negative scintigrams. Rate of accuracy read by physician was 79% and rate of accuracy analysed by computer was 83%. The risk and discomfort of contrast studies may be eliminated by the nuclear method.

INTRODUCTION

The uptake of ^{99m}Tc-sulfur colloid by venous thrombosis is well documented.¹⁻⁹ Recently Bardfeld et al.⁹ have verified that injection of ^{99m}Tc-sulfur colloid into an arm would be a feasible method of detecting deep vein leg thrombosis. Based on reports which suggested that contrast media used for venography might damage the intima of the vein and produce thrombosis,¹⁰⁻¹⁵ we decided to study 24 patients with suspected deep vein thrombosis using Bardfeld's method.

However, we used contrast venography as a standard method. Our experiment was a somewhat more advanced than Bardfeld's series for we compared the result of scintiphotoes as interpreted by a physician in nuclear medicine to more rigid computer analysis and contrast venography.

METHODS

Twenty four patients without varicose veins scheduled for venography were sent to section of

Nuclear Medicine by a surgeon. All had normal liver function, otherwise bone marrow uptake might be misleading. Eight mCi (~300 MBq) of ^{99m}Tc-sulfur colloid was injected via an arm vein. Thirty minutes to an hour later scintiphotoes of anterior views from thighs to ankles were obtained with a large field of view gamma camera. We preset 100,000 counts and only two images could cover the area from thighs to ankles. The scintigrams alone were interpreted by a physician in nuclear medicine. The data of both legs were also stored on a computer. Equal areas of interest were selected on left and right legs. If the uptake in one leg was greater than that in another leg by 20% the scan was considered positive. Contrast venograms were obtained 1 hour to 1 day after scintigraphy.

RESULTS

The radionuclide studies which were interpreted by a nuclear medicine physician, by a computer, and contrast venograms were compared

Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Department of Surgery, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

1. S.S. 5 2. B.P. 5 3. D.P. 3			Physician	Computer	Diagnosis
	56 M	Category ***4, definite positive femoral VT* of the امن امن	Increased activity in the	Positive	Left popliteal VT extending into
3. D.P. 3	58 M	Category 1, equivocal signs, iliofemoral VT of the right leg	Normal	Normal	No evidence of DVT**
	30 F	Category 1, equivocal signs, femoral VT of the right leg	Normal	Normal	No evidence of DVT
4. Y.K. 65 M	5 M	Swelling and pain of the left thigh post	Increased activity in the	Positive	DVT in the left thigh and calf
5. A.M. 48 M	8 M	operation Category 1, equivocal signs, femoral VT of the left leg	ieit unign and cair Normal	Normal	No evidence of DVT
6. L.T. 4	43 F	Category 1, definite positive femoral VT of the right leg	Thrombosis of the right leg	Positive	Posterior tibial vein thrombosis
7. S.C. 2	24 F	Inferior vena cava obstruction, middle portion. due to lymphoma	Normal	Normal	No evidence of DVT, lymphatic
8. K.U. 6	68 M	Category 5, definite positive, iliofemoral VT of the left leg	Normal	Positive	Extensive DVT
9. C.P.	42 F	Category 1, equivocal signs, femoral VT of the right leg	Normal	Normal	No evidence of DVT
10. L.C. 4	43 F	Category 1, definite positive, femoral VT of the left leg	Venous thrombosis of the left leg	Positive	Popliteal VT
11. S.T. 2	26 F	Category I, equivocal signs, femoral VT of the right leg	Normal	Normal	Occlusion of anterior tibial vein
12. S.P. 3	30 F	Category 3, equivocal signs, iliofemoral VT of the left leg	Normal	Normal	Iliofemoral VT of the left leg
13. C.L. 62 M	12 M	Category 4, equivocal signs, iliofemoral VT of the right leg	Normal	Normal	Iliofemoral VT of the right leg
14. P.C. 6	64 M	Category 1, equivocal signs, femoral VT of the left leg	Normal	Normal	Normal
15. B.S. 4	44 M	Category 1, definite signs, iliofemoral VT of the left leg	Probable venous thrombosis of the left lower extrimity	Positive	DVT of the left leg

TABLE 1 Summary of Patient Data

I

Patient	Age (yr) and sex	Clinical History	Scintigram Read by Physician C	by Computer	Venogram and Final Diagnosis
16. S.C. 69 M	W 69	Category 1, definite signs, iliofemoral VT of the left leg	Positive at the left leg	Positive	DVT of the left leg
17. S.Y. 31 F	31 F	Category 1, equivocal signs, femoral VT of the right leg	DVT of the right leg	Positive	DVT of the right leg
18. S.Y. 28 M	28 M	Category 1, equivocal signs, iliofemoral VT of the left leg	Probable DVT of the	Positive	Iliofemoral VT of the left leg
19. W.T. 53 F	53 F	Category 5, equivocal signs, iliofemoral VT of the left leg	Probable DVT of the left leg	Positive	Normal
20. S.T. 74 F	74 F	Category 4, equivocal signs, femoral VT of the left leg	Normal	Normal	No evidence of DVT
21. W.T. 39 M	39 M	Category 5, equivocal signs, Cellulitis of the right leg	Normal	Normal	No evidence of DVT
22. B.K.	32 M	Category 1, equivocal signs, femoral VT of the left leg	Evidence of DVT	Positive	Iliofemoral vein of the left leg
23. C.P. 51 M	51 M	Category 5, equivocal signs, iliofemoral VT of the right leg	DVT of the right leg	Positive	Right femoral vein thrombosis
24. B.P. 75 M	75 M	Category 5, equivocal signs, femoral VT of the right leg	DVT of the right leg	Positive	Thrombosis of posterior tibial vein

= venous thrombosis	= deep venous thrombosis	 Categories for patients with clinical diagnosis of deep vein thrombosis 	: Ambulant patient presenting with pain and/or swelling of calves, without	previous illness	: Proved or suspected pulmonary embolus	: Calf pain or swelling of limb after delivery	: Calf pain or swelling of limb after surgery	: Calf pain or swelling after rest for medical illness	
22									
×T۷	DVT**	Category***	Category 1		Category 2	Category 3	Category 4	Category 5	

Fig.1 A

Fig.1.(A) A patient developed swelling and echymosis after the injection of contrast medium at the dorsum of the left foot.

Fig. 1 B

Fig. 1(B) ^{99m}Tc-sulfur colloid scintigrams show higher uptake by the left leg. The bright spot is a marker placed between the knees of the patient. The ratio of the average uptake of ^{99m}Tcsulfur colloid at the lower part of lt. Leg and foot right foot was 1:1.8

¢

REFERENCES

- George EA, Codd JE, Newton WT, et al. Further evaluation of ^{99m}Tc sulfur colloid accumulation in rejecting renal transplants in man and a canine model. Radiology 1975; 116:121-6.
- George EA, Henry RE, Newton WT, et al. Mechanism of ^{99m}Tc sulfur colloid acumulation in canine renal allografts during hyperacute rejection. J Nucl Biol Med 1975;19:213-9.
- Freeman AH, Wraight EP, Chir B. Uptake of ^{99m}Tc colloid by intravascular clot. Br. J Radiol 1976;49:803-4.
- Viers F, Barron EL, Preliminary observations on the potential of ^{99m}Tc-sulfur colloid as a radiopharmaceutical for detection of deep vein thrombosis. Radiology 1979;132:-473-4.
- Vieras F, Barrn EL, Parker GA, et al. Experimental evaluation ^{99m}Tc-sulfur colloid as a potential imaging agent in thromboembolic disease : concise communication. J Nucl Med 1980;21:723-8.
- Bardfeld PA, Rand J, Coldsmith SJ. The use of ^{99m}Tc-sulfur colloid as a marker for experimental venous thrombosis : concise communication. J Nucl Med 1981;22:598-600.
- Ruksawin N, Phornphibulaya P, Suwanik R, et al. Uptake of ^{99m}Tc-sulphur colloid by deep vein thrombi : a case report. Nuclear Medicine Communications 1984;5:175-8.

- Ruksawin N, Phornphibulaya P, et al. Detection of deep vein thrombosis by ^{99m}Tcsulphur colloid : a case report. Siriraj Hops Gaz 1984;36:221-3.
- Barfeld PA, arrison DA, Wasserstein G, et al : Detection of Deep venous thrombosis with ^{99m}Tc-sulfur colloid : work in progress. Radiology 1983;146:185-9.
- Homans J, Thrombosis as a complication of venography. JAMA 1942;119:136.
- Mersereau WA, Robertson HR. Observation on venous endothelial injury following the injection of various radiographic contrast media in the rat. J neurosurg 1961;18:289-94.
- Ritchie WGM, Lynch PR, Stewart GL. The effect of contrast media on normal and inflamed canine veins : A scanning and transmission electron microscopic study. Invest Radiol 1974;9:444-55.
- Albrechtsson U, Olsson CG. Thrombotic side-effects of lower-limb phlebography. Lancet 1976;1:723-4.
- Albrechtsson U, Olsson CG. Thrombosis after phlebography : a comparison of two contrast media. Cardiovase Radiol 1979;2:9-18.
- Walters HL, Clemenson J, Browse NL, et al. ¹²⁵I-fibrinogen uptake following phlebography of the leg : Comparison of ionic and nonionic contrast media. Diagnostic Radiology 1980;135:619-21.